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Abstract. We describe a cryogenic cavity-optomechanical system that
combines Si3N4 membranes with a mechanically rigid Fabry–Perot cavity. The
extremely high products of quality factor and frequency of the membranes allow
us to cool a MHz mechanical mode to a phonon occupation of n̄ < 10, starting
at a bath temperature of 5 K. We show that even at cold temperatures thermally
occupied mechanical modes of the cavity elements can be a limitation, and we
discuss methods to reduce these effects sufficiently for achieving ground state
cooling. This promising new platform should have versatile uses for hybrid
devices and searches for radiation pressure shot noise.
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1. Introduction

For decades, the mechanical effects of light have been used to coax gas-phase atoms towards
their quantum mechanical ground state of motion. In recent years, experimenters in the field
of cavity optomechanics have learned how to extend the mechanical effects of light to more
massive mesoscale objects. A variety of microfabricated devices, with integrated optical and
mechanical or electrical and mechanical resonators, have now been employed to backaction
cool mechanical objects to near their ground state: successful devices use lithographic electrical
circuits [1–3], nanoscale optical–mechanical silicon resonators [4] or whispering gallery mode
resonators [5]. These experiments combine cryogenic cooling of the mechanical object with
backaction cooling of a specific mechanical mode by harnessing the radiation pressure within a
cavity.

Parallel attempts have been made to cool mirrors or other dielectric objects to their
ground state, and detect motion at quantum limits, within a canonical high-finesse Fabry–Perot
cavity [6–12]. These devices are generally characterized by a lower frequency, higher quality
factor mechanics, larger mass and power handling capabilities closer to macroscopic cavities.
Low-frequency mechanics combined with high quality factors enable longer absolute coherence
times, and hence prospects for long-lived quantum memory elements. A larger motional
mass is important for searches for gravitationally induced quantum collapse [13]. Another
frontier in optomechanical systems is the realization of a quantum-limited continuous position
measurement of a macroscopic object [14–20]. This interest is in part motivated by large
interferometers used for gravitational wave searches that will soon be limited by the so-
called radiation pressure shot noise [14, 15]. So far, operating optomechanical systems at high
power has been one limitation to observation of radiation pressure shot noise, and Fabry–Perot
cavities composed of supermirrors and low-optical-loss mechanics are an excellent candidate
for achieving the required intensities. However, despite the promising combination of optical
and mechanical properties, that Fabry–Perot systems afford, solid-state mechanical resonators in
Fabry–Perot cavities have not yet entered the quantum regime. One reason is that non-integrated
cavities are difficult to make cryogenically compatible while maintaining the optical alignment
and vibrational stability.

Fabry–Perot cavities are also particularly amenable to cooling high-tension, planar
membrane mechanical objects [10], which offer a promising route for creating hybrid
systems for quantum information. In particular, there is considerable interest in combining
optomechanical and electromechanical systems to realize mechanically mediated quantum state
transfer between microwave and optical photons [1, 21–24]. One of the successful platforms for
electromechanics is a 10 MHz membrane coupled to an LC resonator, and hence one possible
electro-optical transducer is a system where electrical and optical cavities are parametrically
coupled to the same mechanical membrane resonator. However, no membrane mechanical
system, and in fact no mechanical object with a frequency below ∼70 MHz, has been brought
to the quantum regime with an optical platform [4, 5].

Here we describe the details of a robust three-component Fabry–Perot cavity at cryogenic
temperatures that incorporates silicon nitride membrane microresonators [10]. Our simple and
near-monolithic design rigidly attaches the cavity mirrors and the membrane to a common
base while maintaining the stringent alignment requirements of a high-finesse cavity [25].
With cryogenic pre-cooling, we can harness the extremely high products of quality factor and
frequency seen in higher-order modes of Si3N4 membranes [24, 26–28], allowing, in principle,
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Figure 1. (a) Membrane-at-the-end cavity and simultaneous image of the
intracavity optical mode and the Si3N4 membrane. The nodes of the (4,4)
mechanical mode are indicated in blue. (b) Device design. Along the axial
direction of the cavity from left to right are: piezoelectric actuator (yellow),
flat cavity mirror (transparent), membrane chip, silicon holder (green) with
piezoelectric actuator (yellow) and curved cavity mirror (not visible).

ground state optomechanical cooling. By laser cooling this device in a 4He flow cryostat at
5 K, we achieve the cooling of a few MHz mechanical mode to the lowest occupations yet
achieved for an oscillator with this low a frequency, n̄ < 10. The limitation to cooling is other
background mechanical modes of the cavity structure; we discuss how to understand the effects
of these modes based on the transmitted intensity spectrum and future routes for eliminating
these modes.

2. Device and experiments

Our cavity consists of two superpolished fused silica substrates with a high-reflectivity coating.
The 100 ppm throughput mirrors can have down to a few ppm scattering absorption, creating
a cavity with a finesse up to 31 000. One mirror has a radius of curvature of 5 cm, and the
other mirror is flat. For the work presented here, the mirrors are placed L = 5.1 mm apart
and the membrane is placed 0.9 mm from the flat mirror. This creates a ‘membrane-at-the-
end’ cavity as shown in figure 1(a). An invar spacer connects the mirrors, the membrane and
the piezoelectric elements that translate the membrane and one mirror along the cavity axis
(figure 1(b)). In contrast to early devices [25], the cavity design presented here allows direct
access to the membrane; by pulling the entire central metal section vertically out of the cavity,
the membrane can be switched out without disturbing the high-finesse cavity mirrors.

The cavity is assembled by aligning the elements at room temperature using an optical
signal and then epoxying each piece in place in turn. We align both cavity mirrors to retroreflect
a single fixed laser beam. The membrane is then inserted into the cavity, held temporarily on
a five-axis micrometer stage. The transverse alignment of the membrane is assessed by in situ
imaging of both the optical mode spot, formed by a 1064 nm laser source, and the membrane,
illuminated with an LED source at 940 nm where the mirror reflectivity is low (figure 1(a)). Any
tilt in the membrane plane relative to the optical axis leads to a displacement and distortion of
the optical mode spot, which also varies with the location of the membrane along the optical
standing wave. The membrane tilt is adjusted so that the location and shape of the optical mode
spot are not perturbed as the membrane travels over an optical wavelength.
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The cavity must be constructed in such a way as to maintain alignment upon cooling the
device down to cryogenic temperatures. To this end, we employ mainly low thermal expansion
materials such as invar, fused silica and the popular cryogenic epoxy Stycast 2850FT. Further, a
key element of the construction is symmetric, uniform thickness epoxy joints that do not result
in relative tilt of the elements due to differential coefficients of thermal expansion, nor in excess
localized mechanical stress build-up.

The membrane inserted into the cavity is a square d = 500 µm Si3N4 membrane from
Norcada Inc. We use t = 40 nm thick membranes, as measured directly via ellipsometry. The
membrane is suspended on a 5 mm square silicon chip with a thickness of 500 µm. We focus on
cooling either the (m,n)=(2,2) or (4,4) drum modes (where m and n are the number of antinodes
in x and y) of the membrane. These modes have resonant frequencies of 1.6 and 3.2 MHz and
square mode sizes of 250 and 125 µm, respectively. These sizes can be compared with the
cavity mode, which is typically measured to have an intensity profile with a 1/e2 diameter of
180 µm at the membrane position. The mechanical mode frequencies are sufficiently large to
theoretically cool to n̄ = 0.02 given the sideband resolution, assuming the full finesse of 31 000,
even for the 1.6 MHz mode. The silicon chip is mounted to the holder also made from silicon. A
compromise between high Qm and mechanical stability is achieved by attaching the membrane
chip only at three corners using Stycast 2850FT. The mechanical damping rate is measured
in situ by observing the mechanical ringdown lifetime with an optical probe at a wavelength
where the cavity has low finesse. The realized values of Qm vary between 106 and 107 at 5 K
depending on chip mounting and membrane cleanliness. The matched thermal expansion of the
chip and holder lowers the stress on the small epoxy joints. However, after thermal cycling from
room temperature to cryogenic a few times, the epoxy joints are weakened and eventually the
angular alignment of the membrane is compromised.

The entire device is cooled using a 4He flow cryostat from Advanced Research Systems
Inc. Additional custom radiation shielding, including cold windows, is necessary to thermalize
the membrane to the temperature of the copper cold finger (figure 2). Alignment is monitored
upon cooling the device by assessing the finesse of the cavity and the consistency of the optical
mode position as a function of the membrane translation within the cavity standing wave. This
analysis shows that we typically maintain sub-milliradian tilts between the components of the
cavity.

The cooling and probing of the membrane motion uses a 1064 nm Nd:YAG laser from
Innolight (figure 2(a)). While already a low-noise source, we additionally pass the light
through a filter cavity (40 kHz linewidth) to remove intensity and frequency noise at our MHz
frequencies of interest. Significant laser cooling of our mechanical resonators requires careful

attention to laser noise [12]. For a sense of scale, laser frequency noise of 1 Hz
√

Hz
−1

will
result in a contribution in the output spectrum equivalent to a typical mechanical signal near
the ground state. A single tone red-detuned from the cavity resonance is used for both cooling
and detection via monitoring the transmitted intensity directly on a photodetector. We also make
use of the orthogonally polarized mode for locking the relative frequency of the laser and the
cavity. At low frequencies we use the piezoelectric actuator attached to the mirror to stabilize
the overall optical path length inside the cavity. High-frequency noise is eliminated by servoing
the laser frequency with an AOM. The overall bandwidth is 100 kHz, and aggressive filtering is
used to eliminate response at the membrane mechanical resonance frequencies. Light from the
two polarization modes is combined and split before and after the cavity on polarizing beam
splitters with cross-coupling of less than 10−3.
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Figure 2. The experiment layout. At the top is the laser and the associated
filter cavity. The three tunable acousto-optical modulators (AOMs) are for:
the high-frequency branch of the cavity-laser lock, detuning the cooling laser
frequency with respect to the locking laser frequency and setting and maintaining
the intensity of each beam. The locking laser is sent through an in-fiber
electro-optical modulator (EOM) that applies frequency sidebands used for
implementing a Pound–Drever–Hall lock. Multiple beams are combined and sent
directly via free space into the cryogenic cavity.

With the membrane near the end of the cavity (figure 1(a)), the coupling between the
membrane motion and the cavity resonance is more complicated than a membrane in the center
of the cavity. The cavity resonance frequency, linewidth and input/output port asymmetry all
depend upon the placement of the membrane within the cavity standing wave, even without
absorptive loss. These phenomena have been extensively numerically modeled in the work
of [27, 29]. A membrane placed near an end mirror can, in fact, have somewhat larger coupling
than a membrane placed near the middle. However, operating at positions of enhanced coupling
results in degraded finesse; hence, in our experiments we actually operate at the local coupling
maxima where κ is minimized.
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Figure 3. (a) Displacement spectrum inferred from cavity transmission near
the (2,2) mechanical mode. Each curve is taken with a different cooling
laser power, with cavity photon occupation ranging from 3 × 105 to 6 × 106

from top to bottom. For this device we operate with a cavity linewidth of
κ/2π = 1.2 MHz and a detuning of 1/2π = −1.6 MHz. (b) Relative transmitted
intensity spectrum corresponding to the same data as in (a). The horizontal
range has been widened to show the large peak on the left stemming from a
mechanical mode of the cavity support structure. Note that detector noise, which
is a dominant contributor for the low power, used in this data set is not subtracted.
Conclusions about phonon occupation for this device are displayed in figure 5.

3. Results

In this paper, we present the results for two different cavity devices. The first data set shown in
figure 3(a) uses a device optimized for cooling the (2,2) mode. As we increase the red-detuned
input optical power, the mode is cooled and damped; the data show just the last amount of
cooling. The mechanical quality factor is the relatively large value of Qm = 13.6 × 106, and
hence the mode is damped from an initial linewidth 0m = 116 mHz to an optically damped
0 = 5.5 kHz (a factor of 47 000).

If we expand the frequency range of the plot we see, however, that the overall relative
transmitted intensity spectrum is not white (figure 3(b)). In these data there is a large peak to
the left of the thermal peak of the (2,2) membrane mode. We attribute this peak to a thermally
occupied mode of a part of the cavity mirrors/coatings or mounting structure (which we will
refer to as ‘cavity mechanical modes’). Figure 4(a) shows a similar set of cooling curves for a
second device focusing on (4,4) mode cooling. Here we see the cavity mechanical modes appear
mainly as a weakly modulated spectrum at the highest optical powers (black curve). Similar
features are evident near the (2,2) mode if a higher laser power is used to attain a lower shot noise
level. We suspect the lower-Q modes in figure 4(a) arise from the fused silica mirror substrates
based upon previous measurements in empty high-finesse cavities with similar mirrors [29, 30],
where at room temperature the modes were found to have a quality factor of 700.
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Figure 4. (a) Cavity cooling data for the (4,4) mode device. For this device we
operate with a cavity linewidth of κ/2π = 1.4 MHz and a detuning of 1/2π =

−2.8 MHz. As discussed in the text, based upon a calculation that includes
the cavity noise, for these data we reach a minimum phonon occupation of
n̄ = 6; note that a simple conversion between the intensity spectrum and motion
(equation (1)) yields n̄ = 6 for the light blue curve (eighth from the top). Detector
noise is not a dominant source here, but the detection efficiency was low due to
loss in the detection path. The small spike at 3.145 MHz in the lowest (black)
data set is electronic in origin. (b) Integrated mechanical response as a function
of cooling power and cryostat temperature (points), along with fits to the data
(lines). The three data sets correspond to cryostat thermometer readings of 4.9 K
(blue), 10 K (green) and 15 K (red). The final point on the 4.9 K data represents
the light blue curve in (a), i.e. corresponds to n̄ = 6 for a naive conversion.
(c) Bath temperature extracted from the effective temperature in (b) as a function
of cryostat thermometer temperature. The vertical error bars are the uncertainty
extracted from the uncertainty in G and mass, and the horizontal error bars
represent the systematic uncertainty of the thermometer.

Particularly high-Q modes, such as the mode in figure 3 (Qm > 20 000), we suspect may be
from the single-crystal silicon substrate holding the membrane; our simulations of the free
modes of the silicon substrate indicate that there are indeed coupled modes around 1.6 MHz.
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In general, we have seen a variety of different cavity mechanical spectra depending on, for
instance, substrate or mirror mounting techniques, coupling of the membrane motion compared
to the cavity end mirrors, or the membrane mechanical quality factor.

The first step in the analysis of our data is a calibration of the membrane motion and an
understanding of the membrane’s bath temperature. We can extract the membrane coupling
in three different ways: (i) using thermally driven motion as a known displacement standard,
(ii) careful measurement of the cavity and membrane geometry including knowledge of the
membrane’s position within the optical standing wave mode and a corresponding model of the
expected coupling and (iii) the optical damping observed for a given intracavity photon number.
In the appendix we compared these models for the (2,2) mode data and found good agreement.
The coupling for the (2,2) mode is found to be G/2π = 1.9 × 1016 Hz m−1 compared to an end-
mirror coupling of ωc/2π L = 5.5 × 1016 Hz m−1. The (4,4) mode data presented here are not a
particularly well-coupled device due to the final optical and mechanical mode overlap; for this
device G/2π = 3.9 × 1015 Hz m−1.

To verify that the membrane is thermalizing to the expected cryostat temperatures, we
look at figure 4(b) that compiles data from the (4,4) device. We plot the integrated mechanical
response from a Lorentzian fit to the data as a function of the mechanical damping (proportional
to intracavity photon number) for three different cryostat temperatures. Here we plot only
the larger response data where effects of cavity mechanical mode noise can be neglected. In
figure 4(c) we show the extracted bath temperature from these three data sets as a function of the
measured cryostat temperature (taking into account slight variations in mechanical and cavity
parameters with the changing bath temperature). We find a linear trend that extrapolates to zero
within the uncertainty, indicating that the membrane mechanical mode does indeed equilibrate
to the cryostat cold finger temperature.

To start we can use our extracted coupling G to apply a naive conversion between the
transmitted intensity spectrum and the mechanical motion of the mode of interest. When cavity
mechanical motion and radiation pressure shot noise can be neglected, we can convert the
relative transmitted intensity spectrum SI(ω) to a (one-sided) displacement spectrum Sz(ω)

using the following relation:

Sz(ω) =
SI(ω)

Ī 2

1

|5(ω)|2G2
. (1)

Here 5(ω) = χc(ω) − χ∗

c (−ω), where χc(ω) =
1

κ/2−ı(ω+1)
is the response function for a cavity

with linewidth κ (energy decay rate) and detuning of the laser from the effective cavity
resonance 1. The extracted Sz(ω) yields a thermally driven, optomechanically damped
Lorentzian on top of a floor coming from optical shot and photodetector dark noise (see, e.g.,
figure 3(a)). We extract the effective temperature of the mode by fitting the data to a Lorentzian.
We use the area under the fit to determine the mean square displacement, which is proportional
to the effective temperature, and the effective phonon occupation n̄. Applying this procedure to
the (2,2) mode data in figure 3(a), we find the apparent effective phonon occupation displayed
as the red squares in figure 5(d), which would indicate that the thermal component of the
mechanical motion is brought to 1.4 quanta.

As discussed above, an important limit to laser cooling is classical noise in the relative
frequency of the cooling laser and cavity resonance frequency. Such effects include laser phase
noise [31–33] and mechanical and thermal noise in the cavity mechanical modes [5, 30, 34].
This relative frequency noise is converted to intensity noise in the cavity for off-resonant
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Figure 5. (a) SI(ω) designed to model the observed relative intensity spectrum
for the data in figure 3(b) at an intracavity cavity photon number of 3.3 × 106

(teal curve seventh from the top in figure 3(b)). (b) Expected contributions to
the relative transmission spectrum due to the cavity mechanical modes, Si(ω)

for the same parameters as in (a). (c) Modeled displacement spectrum of the
(2,2) mechanical mode (solid green). The dashed red line shows the displacement
spectrum expected if we were to ignore Si(ω). (d) Extracted integrated motion
(converted to a phonon occupation) for the (2,2) membrane mechanical mode as
a function of cooling laser power. Red squares show only the contribution of the
thermally driven Lorentzian peak, which correctly predicts a small on-resonance
motional spectral density, but gives an erroneously low phonon occupation.
The green diamonds include the contribution from red squares and the motion
induced by the cavity mechanical mode motion. The curve in (c) corresponds to
the point with a 3 kHz mechanical damping rate.

laser drives, such as cooling tones. The intensity noise applies a radiation pressure force to
the mechanical oscillator leading to an extra displacement and greater effective temperature.
Further, to extract the temperature from the transmitted intensity spectrum in the presence of
classical noise becomes complex [12, 31, 32].

As a first study of the effect of the classical noise on measurements of n̄, we present a more
thorough analysis of the data of figure 3(b). Here, we model the cavity mechanical mode noise
as dominated by a single thermally occupied mode. We then determine the corresponding effect
on the (2,2) mode. Importantly, we assume that the observed cavity mechanical motion does not
directly drive the membrane mode, but rather the only coupling is through the intracavity field.
If this assumption were not true, it is possible that the entire output spectrum could be attributed
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to membrane motion. Further, we assume that the effective mass of the cavity mode is much
larger than that of the membrane mode. The physical mass of expected cavity modes is greater
than 106 times larger than that of membrane modes. Hence, even without complete knowledge
of the coupling to the cavity mode, this is an excellent assumption. Thus, the cavity mechanical
mode motion, to a good approximation, is unaffected by the optomechanical interaction. In
the appendix we present a calculation for this situation. Our model allows us to estimate the
displacement spectrum of the membrane mode from the measured cavity transmission spectrum,
when the simple relation between transmission and displacement spectra (equation (1)) no
longer holds.

We estimate the functional form of the noise spectrum as a Lorentzian centered at the
position of the large cavity mechanical mode peak. Because the noise is concentrated away from
the membrane mode resonance, we may assume (at least for the weakly damped data) that the
area in the transmission spectrum due to the cavity mechanical mode is largely independent of
the membrane motion, and is equal to Si(ω), the transmission spectrum without the membrane
mode of interest present. In the appendix it is shown that this extra intensity noise causes a
radiation pressure force that drives the membrane mode to an additional displacement given by

Sz,δ f (ω) =
4ω2

mg2
0 N̄ 2

|N (ω)|2

Si(ω)

Ī 2
Z 2

zp. (2)

In this expression, g0 = G Zzp where Zzp =

√
h̄

2 mωm
is the zero point motion for an oscillator

with frequency ωm and effective mass m, and N̄ is the intracavity photon number. The function
N (ω) represents the optomechanically modified mechanical response and is displayed in the
appendix.

Curves displaying an example of the modeled spectrum SI(ω) and the cavity mechanical
noise contribution Si(ω) are shown in figures 5(a) and (b). The inferred value of Sz(ω) for
these parameters is plotted in figure 5(c) (green line). Since the majority of the noise peak in
SI(ω) comes directly from Si(ω), the height of the cavity mechanical mode peak relative to the
thermally driven motion in the displacement spectrum is much smaller than the corresponding
ratio in the transmission spectrum. The total estimated displacement of the membrane mode
is shown in figure 5(d) by green diamonds. Specifically, we plot the integrated motion 〈z2

〉 for
curves like that shown in figure 5(c), converted to an equivalent phonon occupation. As the laser
power increases, the contribution of the cavity mechanical mode noise drive increases because
the intensity fluctuations grow in proportion to the optical intensity. Thus, a minimum phonon
occupation of n̄ ≈ 5 occurs at an intermediate intracavity power. And as noted earlier, without
this cavity mechanical mode (or if this mode were much farther away in frequency space) we
would achieve n̄ approaching unity, as displayed by the red squares.

Next we consider the temperature achieved for the (4,4) mode data of figure 4(a) taking into
account the cavity noise. Here our best estimate is obtained by modeling the cavity mechanical
noise spectrum as a white floor. For these data, shot noise for the highest power set (black
curve) corresponds to a relative intensity noise of 6 × 10−15 and hence we would place the
classical cavity noise floor at ∼4 × 10−15. First, it is useful to consider the magnitude of motion
this value corresponds to; as discussed above, we suspect in this case the cavity mechanical
motion is dominated by the mirror fused silica substrates. Using the G values discussed

above, SI/ Ī 2
= 4 × 10−15 corresponds to membrane motion of 0.9 × 10−17 m

√
Hz

−1
or a real
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end-mirror motion of 0.7 × 10−18 m
√

Hz
−1

. Assuming a scaling of the mirror substrate motion
with

√
Tbath, this cavity mirror motion is within a range expected for thermally occupied modes

of fused silica substrates based upon previous measurements of room temperature cavities [29].
Finally, we apply the same model discussed above and in the appendix to these data. Again
we assume that there is no physical coupling between the cavity mechanical modes and
the membrane; since we assign the cavity mechanical modes in this situation to the mirror
substrates, we believe that this is a very good assumption. We use the estimated flat spectrum
at 4 × 10−15 as Si(ω)/ Ī 2 and the data of figure 4(a), and we find that the phonon occupation
reaches a minimum value of n̄ = 6 as a function of cooling laser intensity.

In conclusion, we have presented two experimental data sets in which we have cooled Si3N4

membrane modes, as a conservative estimate, within a factor of 10 of the quantum mechanical
ground state. The dominant uncertainty in our temperature measurement comes from complex
classical noise spectra added at the few-phonon level by other mechanical modes within the
cavity. We expect that with minimal additional optimization of our cavities we can remove the
deleterious effects of these additional cavity modes. Already we have demonstrated the kind of
system parameters required for ground state cooling; for example, a fruitful set of parameters
would combine the coupling and quality factors achieved for the device in figure 3 with the
absence of the isolated high-Q peak in figure 4. We believe that engineering the silicon substrate
to advantageously define the relative frequencies of the membrane and substrate modes will
allow us to consistently achieve desired parameters in future designs [35]. It has also been shown
that relative frequency noise of the cooling laser and cavity resonance frequency can be removed
via active feedback schemes involving higher-order cavity modes [30]. Further, final studies of
these devices will likely be conducted at even colder cryogenic temperatures compatible with
superconducting circuits; here thermal occupation of cavity mirrors and the substrate should be
reduced.

Importantly, so far we have not observed physical absorption heating of our devices that
leads to a significant increase in Tbath. This fact, combined with the efficient detection that these
devices can afford, makes this system promising for the observation of the radiation pressure
shot noise. Even with the presence of cavity frequency noise, shot noise from a sufficiently
strong optical tone placed on the cavity resonance should be efficiently transduced to the
membrane motion.
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Appendix A. Calculation of thermo-mechanical noise in an optomechanical system

To analyze our optomechanical system we consider a standard optomechanical Hamiltonian
with the addition of cavity mechanical modes of the cavity structure indexed by i :

H = h̄ωmc†c + h̄ωca
†a + h̄G Zzp(c + c†)a†a

+h̄
∑

i

(
ωi b

†
i bi + G i Zzp,i(bi + b†

i )a
†a

)
+ Hκ + H0. (A.1)
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Here c is the annihilation operator for the mechanical mode of interest (the membrane mode),
with oscillation frequency ωm and harmonic oscillator length Zzp. a is the annihilation operator
for the cavity mode, at frequency ωc. G is the optomechanical coupling constant, and we
define a single photon coupling rate g0 = G Zzp. bi is the annihilation operator for the i th
cavity mechanical mode with frequency ωi , harmonic oscillator length Zzp,i and optomechanical
coupling G i . Additionally, the term Hκ represents the input and output optical coupling of the
cavity with total cavity decay rate κ = κL + κR + κint. The contributing decay rates stem from
the input port (κL), the output port (κR) and the internal loss (κint). The term H0 represents the
thermal drive on all of the mechanical modes.

The optomechanical interaction can be linearized and fast oscillations at the optical
frequency accounted for by defining a(t) = (ā + d(t)) e−ıωLt . ā =

√
κLāin

κ/2−ı1 is the large classical
amplitude of the intracavity field and d(t) represents small fluctuations about this value. āin is
the coherent state amplitude of the input laser field driven at frequency ωL.

From the Hamiltonian in equation (A.1), we derive a set of Heisenberg–Langevin equations
of motion and transform them into the frequency domain using the Fourier transformation
f (ω) =

∫
∞

−∞
eıωt f (t) dt , f †(ω) =

∫
∞

−∞
eıωt f †(t) dt .

d(ω) = χc(ω)
(
−ı āGz(ω) − ı ā

∑
G i zi(ω) +

√
κLξL(ω) +

√
κintξint(ω) +

√
κRξR(ω)

)
,

z(ω)

Zzp
= ıg0(χ

∗

m(−ω) − χm(ω))(ād†(ω) + ā∗d(ω)) +
√

0m(χm(ω)η(ω) + χ∗

m(−ω)η†(ω)),

zi(ω)

Zzp,i
=

√
0i(χi(ω)ηi(ω) + χ∗

i (−ω)η
†
i (ω)),

z and zi represent the small displacements of the mechanical modes about their
optomechanically shifted equilibrium positions z̄ and z̄i , such that Zzp(c + c†) = z̄ + z and

Zzp,i(bi + b†
i ) = z̄i + zi . We use here the mechanical susceptibilities χm(ω) =

1
0m/2−ı(ω−ωm)

and

χi(ω) =
1

0i /2−ı(ω−ωi )
. χc(ω) =

1
κ/2−ı(1+ω)

is the cavity susceptibility, where 1 = ωc − ωL − Gz̄ −∑
G i z̄i is the detuning of the laser input frequency from optomechanically shifted cavity

resonance frequency. The operators ξL e−ıωLt , ξR e−ıωLt and ξint e−ıωLt are the Langevin noise
operators representing vacuum fluctuations entering the cavity from the input, loss and output
ports (see, for example, [36, 37]). η and ηi are the Langevin noise operators representing
the thermal and vacuum noise driving the mechanical modes. To simplify the equations of
motion we drop small terms of order d2, dz, and dzi . Additionally, we work in the limit where
G2

i Z 2
zp,i ā

∗ā/κ � n̄th,i0i with n̄th,i =
kbTbath

h̄ωi
and Tbath is the bath temperature of the modes. In this

limit the optical drive does not perturb the mechanical state of the cavity mechanical modes.
However, signatures of the cavity mechanical modes are still imprinted on the optical mode.

We can then solve the equations of motion and calculate the mechanical displacement
spectrum S(2)

z (ω) = 〈z(−ω)z(ω)〉:

〈z(−ω)z(ω)〉

Z 2
zp

=
1

N (−ω)N (ω)

{
0m

(
n̄th + 1

|χm(ω)|2
+

n̄th

|χm(−ω)|2

)
+ 4ω2

mg2
0κ ā∗ā|χc(−ω)|2

+4ω2
mg2

0(ā
∗ā)2

|5(ω)|2〈δ f (−ω)δ f (ω)〉
}
, (A.2)
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where N (ω) =
1

χm(ω)χ∗
m(−ω)

− ı2ωmg2
0 ā∗ā5(ω) and 5(ω) = χc(ω) − χ∗

c (−ω). We make use of

the operator expectation values 〈ξL(−ω)ξ
†
L(ω)〉 = 〈ξint(−ω)ξ

†
int(ω)〉 = 〈ξR(−ω)ξ

†
R(ω)〉 = 1, and

〈η(−ω)η†(ω)〉 = n̄th + 1, 〈η†(−ω)η(ω)〉 = n̄th. The first term of equation (A.2) contains the
thermal motion of the membrane. The second term includes the membrane motion induced by
radiation pressure from optical shot noise. The effect of the cavity mechanical modes is seen
in the third term, through 〈δ f (−ω)δ f (ω)〉 =

∑
G2

i 〈zi(−ω)zi(ω)〉, which represents the noise
spectrum of the cavity frequency shifts induced by the cavity mechanical modes.

We next compute the spectrum of intensity fluctuations for light directly detected on
a photodetector at the output port of the cavity. Let S(2)

II = 〈(I (−ω) − Ī )(I (ω) − Ī )〉 be the

two-sided power spectrum of the detected photocurrent where I (t) = εh̄ωLRa†
out(t)aout(t) +

(1 − ε)a†
n (t)an(t) + Id(t), with mean value Ī = 〈I 〉. R=

qe

h̄ωL
is the photodetector sensitivity

where qe is the electron charge. ε is the detection efficiency, an(t) = ξn(t) e−ıωLt is a Langevin
noise operator representing vacuum fluctuations entering the detector through the loss port
associated with the detector inefficiency and Id is the photodetector dark current. The
output optical field aout(t) = (āout + dout(t)) e−ıωLt is evaluated via the input–output relations:
āout =

√
κRā and dout = ξR +

√
κRd .

S(2)
II (ω)

Ī 2
=

1

κR(ā∗ā)2
〈[ā∗(

√
κRd(−ω) − ξR(−ω)) + ā(

√
κRd†(−ω) − ξ

†
R(−ω))]

×[ā∗(
√

κRd(ω) − ξR(ω)) + ā(
√

κRd†(ω) − ξ
†
R(ω))]〉

+
1 − ε

ε

1

κRā∗ā
+

〈Id(−ω)Id(ω)〉

Ī 2

= 〈9(−ω)9(ω)〉 +
1 − ε

ε

1

κRā∗ā
+

〈Id(−ω)Id(ω)〉

Ī 2
,

where 9(ω) = 9q(ω) + 9m(ω) + 9i(ω) contains the following components:

9q(ω) =
1

ā∗ā

(
ā∗

√
κLχc(ω)ξL(ω) + ā

√
κLχ

∗

c (−ω)ξ
†
L(ω) +

ā∗

√
κR

(κRχc(ω) − 1)ξR(ω)

+
ā

√
κR

(κRχ∗

c (−ω) − 1)ξ
†
R(ω) + ā∗

√
κintχc(ω)ξint(ω) + ā

√
κintχ

∗

c (−ω)ξ
†
int(ω)

)
,

9m = −ıG5(ω)z(ω),

9i = −ı5(ω)δ f (ω).

We can thus compute the functions

〈9q(−ω)9q(ω)〉 =
1

κRā∗ā
,

〈9m(−ω)9m(ω)〉 = G2
|5(ω)|2〈z(−ω)z(ω)〉,

〈9i(−ω)9i(ω)〉 = |5(ω)|2〈δ f (−ω)δ f (ω)〉
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and the non-zero cross terms are

〈9q(−ω)9m(ω)〉 + 〈9m(−ω)9q(ω)〉 = −4ωmg2
0 Im

[
5(ω)

N (ω)
χc(−ω)

]
,

〈9i(−ω)9m(ω)〉 + 〈9m(−ω)9i(ω)〉 = −4ωmā∗āg2
0 Im

[
5(ω)

N (ω)

]
|5(ω)|2〈δ f (−ω)δ f (ω)〉.

The photodetector signals we record in the experiment are one-sided power spectra SI(ω) =

S(2)
II (−ω) + S(2)

II (ω). Similarly, we define Si(ω)/ Ī 2
= 2〈9i(−ω)9i(ω)〉, the one-sided spectrum

of transmitted intensity noise due to the fluctuations of the cavity mechanical modes, and from
this we infer Sz(ω) = 〈z(−ω)z(ω)〉 + 〈z(ω)z(−ω)〉 the one-sided displacement spectrum.

If the contribution of the cavity mechanical modes is small (Si(ω) → 0) and the radiation
pressure shot noise is small, then the displacement spectrum can be easily inferred from the
transmission spectrum:

Sz,δ f →0(ω) + Snoisefloor(ω) =
1

G2|5(ω)|2

SI(ω)

Ī 2
,

where Snoisefloor(ω) =
2

G2|5(ω)|2
( 1

ε

1
κRā∗ā + 〈Id(−ω)Id(ω)〉/ Ī 2) is the detection noise floor due to

optical shot noise and detector noise. If frequency noise is not negligible and Si(ω) can be
measured empirically, then the contribution to Sz(ω) from the optomechanically transduced
fluctuations of the cavity mechanical modes can be computed from equation (A.2):

Sz,δ f (ω)

Z 2
zp

=
4ω2

mg2
0(ā

∗ā)2

|N (ω)|2

Si(ω)

Ī 2
. (A.3)

Note that ā∗ā is the intracavity photon number N̄ . From Sz(ω) the root mean square
displacement of the membrane mode can be computed:

〈z2
〉

Z 2
zp

=

∫
∞

0

Sz(ω)

Z 2
zp

dω

2π
= 2

(
n̄ +

1

2

)
.

We can compare our final expression for the impact of mechanical modes within the cavity
(equation (A.3)) to the result expected for equivalent frequency noise on a laser at the input port
of the cavity. We find that our expression can be translated into a formula equivalent to the laser
frequency-noise result derived in, for example, [32].

Appendix B. Calibration of membrane motion

Here we present three different methods we use to calibrate the mechanical motion and
corresponding temperature. We compare the methods by assessing the membrane coupling
extracted in each case for the (2,2) data presented in figure 3; based on these analyses we deduce
an uncertainty in G of 5%.

B.1. Bath temperature and optical damping

The thermal motion of the mechanical resonator is equated to the effective temperature T
via 〈z2

〉 =
kbT
mω2

m
. Optomechanical cooling theory in the large damping limit tells us that T =

Tbath
0m
0

, where 0 can simply be determined by the measured linewidth of the optically damped
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mechanical resonator. We compare 〈z2
〉 as determined via integrating the spectrum

∫
∞

0 Sz(ω) dω

2π

to that from kbTbath
mω2

m

0m
0

. Tbath = 4.9 K is input based upon the cryostat thermometer, where the
accuracy of this measurement was motivated via the trend in figure 4(c). Sz(ω) can be extracted
from the measured intensity spectrum via equation (1) with one free parameter G.

The inputs to this calculation are: κ/2π = 1.2 MHz, which is determined by a measurement
of the cavity linewidth in ringdown for the position of the membrane during the measurement.
1/2π = 1.6 MHz, which is determined from the detuning set with respect to the on-resonant
locking light, accounting for a birefringent splitting of 0.4 MHz. The mechanical frequency
ωm/2π = 1.575 MHz. The mechanical quality factor Qm = 13.6 × 106. The effective mass
m = ρd2t/4, which is determined using ρ = 2700 kg m−3 [38]. (However, given the range of
values in the literature for LPCVD Si3N4 [29], we would place a 10% systematic uncertainty on
the mass. Note that the mass uncertainty is relevant for G but not g0 [39].)

This comparison tells us that G/2π = 1.8 × 1016 Hz m−1.

B.2. Membrane-at-the-end model

With knowledge of the position of the membrane within the cavity standing wave, we can model
the expected coupling. In each iteration of the experiment, we scan the membrane within the
cavity to sit at the position for which the cavity linewidth κ is minimized [29]. With knowledge
of the cavity and membrane parameters, we can calculate the expected coupling at this operating
position we refer to as Zmin. Zmin is registered within the standing wave ∼0.9 mm from the flat
mirror of the cavity. The cavity has an overall length of 5.1 mm, which is measured via the
ratio of the transverse mode spacing to the free spectral range of 29.4 GHz. Based on direct
ellipsometry measurements of our film, we base our calculation on a t = 40 nm thick membrane
with index n = 2.0. Hence, at Zmin we predict dωc/dz = 2π × 2.9 × 1016 Hz m−1.

We then apply a correction based upon the measured transverse mode overlap between the
mechanical mode of interest and the TEM00 cavity mode (an example of such a measurement is
shown in figure 1). To account for the mode overlap, we calculate G = η dωc

dz using [40]

ηmn =

∣∣∣∣∫∫
dx dy I (x, y)amn(x, y)/a0

∣∣∣∣ , (B.1)

where amn = a0 sin(mπx/d)sin(nπy/d) and I (x, y) is a normalized intensity function
I (x, y) =

2
πwxwy

exp(−2(x − x0)
2/w2

x)exp(−2(y − y0)
2/w2

y). We measure the location of the
(2,2) mode while cold to be at the coordinate position (x0, y0) = (108, 99) µm. The size
of the mode in x ,y is measured to be wx = 92 µm and wy = 88 µm. Hence η = 0.67, and
G/2π = 2.0 × 1016 Hz m−1.

B.3. Optical damping and intracavity photon number

The optical damping 0 we observe for a given intracavity photon number is also a measure
of G. To infer the intracavity photon number N̄ from the measured output flux of the cavity,
we understand the asymmetry of the cavity and the internal loss. Usually, we orient the cavity
according to figure 1 where the membrane is at the output (right) side of the cavity, providing the
most signal at the output. However, for these particular measurements we happened to measure
out the less-transmissive port of the cavity, i.e. the membrane and flat mirror were actually at
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the input (left) side of the cavity. For a measurement of the photocurrent Ī at the output port the
photon number is given by

N̄ =
Pout

h̄ωcκ

κ

κR
=

1

κR

Ī

qe

1

ε
(B.2)

for a low-reflectivity membrane [29], where ε = εdεp is a combination of two efficiency factors.
In our setup for these measurements, the detector efficiency is εd = 0.87 and the propagation
losses from the cavity output to the detector are given by εp = 0.88.

To find κR we must understand all the contributions to κ = κR + κL + κint. κint is dominated
by clipping of the transverse mode on the silicon frame that results from imperfect alignment
when cooling to cryogenic temperatures, and hence for modeling G and κ we consider this a
loss that is independent of membrane position. At the position that corresponds to the minimum
value of κ (Zmin), the theoretical analysis of the three-element cavity described above indicates
that κmin = 0.79 MHz. With a well-aligned cavity we often achieve this value; in this particular
cavity at room temperature, we achieve κmin = 0.85 MHz, and when cooled down we find that
κmin = 1.17 MHz. This indicates an internal loss contribution of κint = 0.33κ . The ratio between
κR and κL can be calculated from the asymmetry of the cavity, which can be determined by a
calculation of the resonant reflection R and transmission T at our operating position of Zmin.
We use the expression κL/κR =

(1+
√

R)2

T to find that κL/κR = 1.9 [29]. Thus κR = 0.23κ taking
into account κint.

We then compare the measured optically damped linewidth 0 to the expected calculated 0

given by [41, 42]

0 = G2 Z 2
zpκ N̄

(
|χc(ωm)|2 − |χc(−ωm)|2

)
. (B.3)

This gives us G/2π = 1.9 × 1016 Hz m−1.
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